Student Corner

Dihydrogen Complexes

K. Sarath D. Perera

Senior Professor in Chemistry, Department of Chemistry, The Open University of Sri Lanka

We know that neutral ligands such as H_2O , NMe_3 and PPh_3 donate a pair of electrons on the heteroatom to a metal center when coordinate bond is formed. Transition metal hydrides contain at least one M-H bond where a pair of electrons is shared between hydrogen and the metal center. In this article, syntheses and properties of complexes with **molecular hydrogen** (H₂) are presented.

Can a simple molecule such as H_2 form a bond with a metal center?

Molecular hydrogen or dihydrogen does not contain a lone pair of electrons and it has only **a pair of \sigma-bonding electrons** shared between both hydrogen atoms. H₂ can use these two electrons to ligate to a metal forming a **dihapto** dihydrogen (η^2 -H₂) ligand. Formation of metaldihydrogen complexes, [L_nM(η^2 -H₂)] was recognized by Kubas in 1984, *e.g.*, [M(η^2 -H₂)(CO)₃(PR₃)₂] (1) where M = W or Mo, R = Prⁱ and Cy.

Figure 1. mer, trans- $[M(\eta^2-H_2)(CO)_3(PCy_3)_2]$, Cy = chyclohexyl

These are zerovalent octahedral complexes and not seven coordinated divalent complexes (or dihydrides). These are called non-classical hydrides. The coordinated H–H bond can be cleaved to form classical dihydrides. Thus, a dihydrogen complex can be considered as an intermediate in the oxidative addition process of H_2 to a metal centre.

Formation of H₃⁺ ion

Donation of σ -bonding electrons of H_2 to the H^+ ion produces a triangular H_3^+ ion (2) in the gas phase which can be considered as the dihydrogen complex of the proton (H⁺).

Figure 2. Formation of H_3^+ ion

Formation of CH₅⁺ ion

The methyl cation (CH_3^+) combines with H_2 to form the CH_5^+ ion (3) or the dihydrogen complex of the methyl carbonium ion as shown in Figure 3.

Figure 3. Formation of CH_5^+ ion (3)

Formation of dihydrogen complexes

Molecular H_2 can form a complex with a suitable metal fragment L_nM to produce $[L_nM(\eta^2-H_2)]$ (4) as shown in Figure 4.

$$L_nM + H_2 \longrightarrow L_nM \xleftarrow{H} H_2$$
(4)

Figure 4. Formation of $[L_n M(\eta^2 - H_2)]$ (4)

Here, the H-H bond acts as a ligand. The coordination of dihydrogen weakens the H-H bond but does not break it as found in oxidative addition (O.A.) reactions of H_2 . It is quite possible to have back bonding due to donation of metal $d\pi$ electrons to the H-H σ^* -orbital. Sometimes, this back donation component is strong enough to break the H-H bond resulting in the dihydride [L_nMH₂] (5) as shown in Figure 5.

Figure 5. Formation of $[L_nMH_2]$ (5)

Note: Since H₂ is a weak donor ligand some degree of back

bonding is essential to form an isolable $\eta^2\mbox{-}dihydrogen$ complex.

Properties of dihydrogen complexes

IR and NMR spectroscopies can be used to study the behaviour of dihydrogen complexes.

- a) The IR absorption frequency, υ(HH), of the coordinated H–H should appear at 2300-2900 cm⁻¹, but it is not always seen. Free H₂ is IR inactive.
- b) In the ¹H-NMR spectrum, the hydrogen resonance is often broad and appears between 0 to -12 ppm. The presence of a coordinated H-H bond can be confirmed by preparing the H-D analogue where there is a ¹J(HD) coupling of about 20-34 Hz. Free HD has a ¹J(HD) value of 43 Hz. In classical hydrides ²J(HD) is less than 1 Hz.
- c) Free dihydrogen has a H–H bond distance of 0.74 Å. In dihydrogen complexes, the H–H bond distance varies between 0.82-1.0 Å.
- d) The bound H_2 (pK_a ≈ 0 to 15) is much more acidic than the free H_2 (pK_a = 35).

Synthesis of dihydrogen complexes

Some classical hydrides can be protonated to synthesize dihydrogen complexes. Some coordinatively unsaturated complexes tend to accommodate H_2 into the vacant site, thereby satisfying the 18e rule. Some examples are given below.

By protonating metal hydrides

(a) Protonation of *trans*-[FeH₂(dppe)₂] (6) with HBF₄ gives the dihydrogen complex [FeH(η^2 -H₂)(dppe)₂] BF₄ (7) as a pale yellow solid.

Figure 6. Formation of (7) from (6)

(b) HBF₄ can reversibly protonate the multihydride $[IrH_5(PCy_3)_2]$ (8) to generate the complex $[IrH_2(\eta^2 H_2)_2(PCy_3)_2]BF_4$ (9) with two dihydrogen ligands.

Figure 7. Formation of (9) from (8)

At room temperature, the ¹H-NMR spectrum of the complex (**9**) is fluxional and gives a broad peak at –8 ppm for both hydrides and dihydrogen ligands. At –85°C, it gives two resonance with intensity ratio of 2:1; one at –5.05 ppm the half-width $W_{1/2} = 175$ Hz for two dihydrogen and the other at –15.3 ppm with $W_{1/2} = 154$ Hz for the two hydrides.

By filling a vacant site

The zerovalent complex $[M(CO)_3(PCy_3)_2]$ (10) where M = Mo, W, takes up H₂ to give a six-coordinate dihydrogen complex *mer*, *trans*- $[M(\eta^2-H_2)(CO)_3(PCy_3)_2]$ (1). In this case, H₂ binds reversibly and H₂ can be removed by bubbling argon through the solution.

Figure 8. Formation of (1) from (10)

According to X-ray crystal structure of the tungsten analogue of (1), the H–H vector is parallel to the P-W-P axis rather than the OC–W–CO axis. d(H-H) = 0.82 Å, d(W-H) = 1.89 Å.

In the proton NMR spectrum, the resonance due to (η^2-H_2) is broad in the region -3 to -4.5 ppm. H_2 ligand rotates readily about the $M-(H_2)$ axis. The IR absorption frequency of H-H bond is 2690 cm⁻¹.

 SO_2 can displace dihydrogen ligand from $[Mo(\eta^2-H_2)$ (CO)₃(PCy₃)₂] to produce the red orange complex $[Mo(SO_2)(CO)_3(PCy_3)_2]$.

 $[W(\eta^2-H_2)(CO)_3(PPr_3^i)_2]$ reacts with N_2 to give the N_2 -bridged binuclear complex $[(OC)_3(Pr_3^iP)_2W(\mu-N_2)]$

Figure 9. Structure of N₂-bridged complex (11)

Problems

- 1. Explain the formation of CH_5^+ cation.
- 2. Draw the structures of the following dihydrogen complexes.
 - a) mer, trans- $[W(\eta^2-H_2)(CO)_3(PPr_3^i)_2]$
 - b) *trans*-[Fe(η^2 -H₂)H(dppe)₂]BF₄
 - c) $[CpRu(\eta^2-H_2)(PPh_3)(NCBu^t)]^+$
 - d) $[CpRe(NO)(CO)(\eta^2-H_2)]^+$
 - e) $trans-[IrH_2(\eta^2-H_2)_2(PCy_3)_2]^+$
 - f) mer, cis-[FeH₂(η^2 -H₂)(PPh₃)₃]
 - g) $[\text{ReH}_{5}(\eta^{2}-\text{H}_{2})(\text{PPh}_{3})_{2}]$