Student Corner

Dihydrogen Complexes

K. Sarath D. Perera

Senior Professor in Chemistry, Department of Chemistry, The Open University of Sri Lanka

We know that neutral ligands such as H_2O , NMe_3 and PPh₃ donate a pair of electrons on the heteroatom to a metal center when coordinate bond is formed. Transition metal hydrides contain at least one M-H bond where a pair of electrons is shared between hydrogen and the metal center. In this article, syntheses and properties of complexes with **molecular hydrogen** (H_2) are presented.

Can a simple molecule such as H_2 form a bond with a metal center?

Molecular hydrogen or dihydrogen does not contain a lone pair of electrons and it has only **a pair of σ-bonding** ${\bf electrons}$ shared between both hydrogen atoms. ${\bf H}_{_2}$ can use these two electrons to ligate to a metal forming a **dihapto** dihydrogen $(\eta^2 - H_2)$ ligand. Formation of metaldihydrogen complexes, $[L_nM(\eta^2-H_2)]$ was recognized by Kubas in 1984, *e.g.*, $[M(\eta^2-H_2)(CO)_3(PR_3)_2]$ (1) where M $=$ W or Mo, $R = Pr^i$ and Cy.

Figure 1. *mer,trans*- $[M(\eta^2-H_2)(CO)_{3}(PCy_{3})_{2}]$, $Cy = chyclohexyl$

These are zerovalent octahedral complexes and not seven coordinated divalent complexes (or dihydrides). These are called non-classical hydrides. The coordinated H–H bond can be cleaved to form classical dihydrides. Thus, a dihydrogen complex can be considered as an intermediate in the oxidative addition process of $\mathrm{H}_{_{2}}$ to a metal centre.

Formation of H_3^+ ion

Donation of σ-bonding electrons of H_2 to the H^+ ion produces a triangular H_3^+ ion (2) in the gas phase which can be considered as the dihydrogen complex of the proton (H^{\dagger}) .

Figure 2. Formation of H_3^+ ion

Formation of CH₅⁺ **ion**

The methyl cation (CH_3^+) combines with H_2 to form the $CH₅⁺$ ion (3) or the dihydrogen complex of the methyl carbonium ion as shown in Figure 3.

Figure 3. Formation of $CH₅⁺$ ion (3)

Formation of dihydrogen complexes

Molecular H_2 can form a complex with a suitable metal fragment L_nM to produce $[L_nM(\eta^2-H_2)]$ (4) as shown in Figure 4.

$$
L_nM + H_2 \longrightarrow L_nM \longrightarrow \begin{array}{c} H \\ | \\ (4) \end{array}
$$

Figure 4. Formation of $[L_nM(\eta^2-H_2)]$ (4)

Here, the H-H bond acts as a ligand. The coordination of dihydrogen weakens the H-H bond but does not break it as found in oxidative addition (O.A.) reactions of $\rm H_{2}.$ It is quite possible to have back bonding due to donation of metal $d\pi$ electrons to the H-H σ^* -orbital. Sometimes, this back donation component is strong enough to break the H-H bond resulting in the dihydride $[L_n M H_2]$ (5) as shown in Figure 5.

Figure 5. Formation of $[L_n M H_2]$ (5)

Note: Since H_{2} is a weak donor ligand some degree of back

bonding is essential to form an isolable η^2 -dihydrogen complex.

Properties of dihydrogen complexes

IR and NMR spectroscopies can be used to study the behaviour of dihydrogen complexes.

- a) The IR absorption frequency, υ(HH), of the coordinated H–H should appear at 2300-2900 cm–1, but it is not always seen. Free H_2 is IR inactive.
- b) In the ¹H-NMR spectrum, the hydrogen resonance is often broad and appears between 0 to –12 ppm. The presence of a coordinated H–H bond can be confirmed by preparing the H–D analogue where there is a ¹J(HD) coupling of about 20-34 Hz. Free HD has a 1 J(HD) value of 43 Hz. In classical hydrides 2 J(HD) is less than 1 Hz.
- c) Free dihydrogen has a H–H bond distance of 0.74 Å. In dihydrogen complexes, the H–H bond distance varies between 0.82-1.0 Å.
- d) The bound H_2 ($pK_a \approx 0$ to 15) is much more acidic than the free H_2 (pK_a = 35).

Synthesis of dihydrogen complexes

Some classical hydrides can be protonated to synthesize dihydrogen complexes. Some coordinatively unsaturated complexes tend to accommodate $\mathrm{H}_{_{2}}$ into the vacant site, thereby satisfying the 18e rule. Some examples are given below.

By protonating metal hydrides

(a) Protonation of *trans*- $[FeH_2(dppe)_2]$ (6) with HBF₄ gives the dihydrogen complex [FeH(η^2 -H₂)(dppe)₂] BF_4 (7) as a pale yellow solid.

Figure 6. Formation of (**7**) from (**6**)

(b) $\rm{HBF_{4}}$ can reversibly protonate the multihydride [IrH₅(PCy₃)₂] (8) to generate the complex [IrH₂(η ²) H_2 ²₂(PCy₃²₂]BF₄ (**9**) with two dihydrogen ligands.

Figure 7. Formation of (**9**) from (**8**)

At room temperature, the ¹H-NMR spectrum of the complex (**9**) is fluxional and gives a broad peak at –8 ppm for both hydrides and dihydrogen ligands. At -85 ^oC, it gives two resonance with intensity ratio of 2:1; one at –5.05 ppm the half-width $W_{1/2}$ = 175 Hz for two dihydrogen and the other at –15.3 ppm with $W_{1/2} = 154$ Hz for the two hydrides.

By filling a vacant site

The zerovalent complex $[M(CO)_{3}(PCy_{3})_{2}]$ (10) where $M = Mo$, W, takes up H_2 to give a six-coordinate dihydrogen complex *mer, trans*- $[M(\eta^2-H_2)(CO)_3(PCy_3)_2]$ (1). In this case, H_2 binds reversibly and H_2 can be removed by bubbling argon through the solution.

Figure 8. Formation of (**1**) from (**10**)

According to X-ray crystal structure of the tungsten analogue of (**1**), the H–H vector is parallel to the P-W-P axis rather than the OC–W–CO axis. $d(H-H) = 0.82$ Å, $d(W-H) = 1.89$ Å.

In the proton NMR spectrum, the resonance due to (η²-H₂) is broad in the region -3 to -4.5 ppm. H₂ ligand rotates readily about the $\mathrm{M{-}}(\mathrm{H}_{2})$ axis. The IR absorption frequency of H-H bond is 2690 cm–1.

SO₂ can displace dihydrogen ligand from [Mo(η^2 -H₂) $(CO)_{3}(PCy_{3})_{2}]$ to produce the red orange complex $[Mo(SO₂)(CO)₃(PCy₃)₂].$

[$W(\eta^2-H_2)(CO)_{3}(PPr_3^i)_2$] reacts with N_2 to give the N₂-bridged binuclear complex [(OC)₃(Pr^{*i*}₃P)₂W(μ-N₂)

Figure 9. Structure of N_2 -bridged complex (11)

Problems

- 1. Explain the formation of $CH₅⁺$ cation.
- 2. Draw the structures of the following dihydrogen complexes.
	- a) *mer, trans* $[W(\eta^2-H_2)(CO)_3(PPr_3^2)_2]$
	- b) $trans$ - $[Fe(\eta^2-H_2)H(dppe)_2]BF_4$
	- c) $[CpRu(\eta^2-H_2)(PPh_3)(NCBu^t)]^+$
	- d) $[CpRe(NO)(CO)(\eta^2-H_2)]^+$
	- e) $trans-[IrH_2(\eta^2-H_2)_2(PCy_3)_2]^+$
	- f) *mer,cis*-[FeH₂(η^2 -H₂)(PPh₃)₃]
	- g) $[ReH_5(\eta^2-H_2)(PPh_3)_2]$